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ABSTRACT: In practice, runoff peak flow rates are typically estimated by the rational method, a design storm
unit hydrograph (UH) method, or a statistical regression equation. In this technical note, the balanced design
storm UH procedure is used to derive a rational method peak flow rate equation that, in tum, is used to derive
a regression equation. This new mathematical linkage across these three widely used peak flow rate estimation
techniques provide a foundation as to how these approaches differ or agree, and may also provide an answer
as to which method is "best"; specifically, the methods are essentially the same for many practical conditions,
and where they differ, the underpinnings of their mathematical structures are illuminated.

INTRODUCTION

The rational method continues to be a widely used runoff
peak flow rate estimator for designing small drainage facilities
[e.g., Hromadka et aI. (1987); Hromadka et aI. (1994)]. The
unit hydrograph (UH) balanced T-year design storm method,
as described in the U.S. Army Corps of Engineers (USACE)
Training Document 15 (1982) is another widely used tech
nique for estimating peak flow rates that involves considerably
more computational effort than the rational method. Addition
ally, USACE (1982) has been adopted, with modifications, as
the basis for a number of recently developed hydrology man
uals for county flood control agencies [see Hromadka et aI.
(1986, 1987, 1992), among others]. Peak flow rates are also
estimated by statistical regression equations (e.g., the U.S. Ge
ological Survey equations) that are calibrated to local runoff
data.

In the present technical note, the balanced design storm UH
approach is used to mathematically derive a rational method
equation for the two cases of catchment areas less than 2.5
km2 (1 sq mi) [also see the derivation contained in Hromadka
(1995)], and catchment areas greater than 2.5 km2 (1 sq mi).
It is shown that peak flow rates developed from the well
known TD-15 (USACE 1982) balanced design storm UH
method are equal to rational method peak flow estimates, ex
cept that the underlying normalized UH (or S-graph) results
in a new constant to be multiplied to the usual rational method
mean rainfall intensity. The linkage developed herein between
the rational method and the balanced design storm UH method
also depends on the loss function used. The widely used phi
index (constant loss function) approach and the constant pro
portion loss functions are considered. The mathematical de
velopment results in a simple modification of the standard
rational method equation structure, with the introduction of a
fixed constant (multiplied to mean rainfall intensity) that cor
responds to the parent normalized UH (or S-graph type) and
also the rainfall depth-duration log-log exponent. For areas
greater than 2.5 km2 (1 sq mi), the effects of depth-area ad
justments are included, resulting in a peak flow rate estimator
that corresponds to the typical regression equation structure.
Although it is often conjectured that there exists a linkage
among the three considered peak flow rate estimators, it ap
pears that a constructive mathematical derivation across these
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different peak flow rate estimators has not been presented in
the open literature.

MATHEMATICAL DEVELOPMENT

In the following, a rational method peak flow rate estimator
is derived from the balanced design storm UH method [of
USACE (1982)]. This derivation is presented in detail in Hro
madka (1995) and Hromadka and Whitley (1996). Only the
key steps are presented for the reader's convenience, so that
the subsequent extension to regression equations can be better
seen.

Unit Hydrographs

UHs for a catchment may be developed from normalized S
graphs (Hromadka and Whitley 1989; USACE 1982). Gener
ally, S-graphs can be developed that apply across large
regions, e.g., several countywide hydrology manuals use S
graphs that apply to mountain, desert, foothill, or valley area
catchments [see Hromadka (1986, 1987, 1992)]. The S-graph
is typically expressed by S(l), where L = proportion (percent)
of catchment lag in which catchment lag can be related to the
catchment time of concentration Te by (Hromadka et al. 1987)

lag = ')'Te (I)

where'Y =calibration constant. Then S(l) =S(tIOO/'YTe), where
the UH is expressed as a function of Te •

For Te = 1 and catchment area A = 1, a normalized UH
results, V(t). For Te '# I or A '# I, the catchment UH, u(t, To
A), is given by

u(t) =u(t, Te , A) =A V (!-.) (2)
Te Te

where, by definition

ru(t, To A) dt =A rV (!-.) dt =AVo (3)Jo Jo Te Te

where Vo = constant; and u(t, To A) may be written as u(t).

Rainfall Depth-Duration Relationships

Precipitation depth-duration relationships, for a given return
frequency, are generally given by the power law (Hromadka
and Whitley 1996)

(4)

where a > 0 = function of return frequency and is assumed
constant for a selected design storm return frequency; "b" is
typically a constant for large regions (e.g., entire counties);
D(T) = rainfall depth corresponding to peak duration T; and T

= selected duration of time of peak rainfall depth.
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FIG. 1. Alignment of Unit Hydrograph and Balanced Dealgn
Storm Used In Eqa. (10)-(17)

(12)

Peak Flow Rate Estimates from Balanced Design
Storm Unit Hydrograph Procedure and Rational
Method

Let v(t) = v(nTc - t), where v(t) = time-reversed plot of
the UH u(t); and X o = 1)Tc = total duration of the UH, where
1) is a constant for a given S-graph. From Fig. 2 and to obtain
a peak flow estimate, aligning the UH peak to occur at time
t'" = 0 (see Fig. 1)

v+(t+) =u(Tp - t+), O:s t+ :S Tp (10)

v-(n =u(Tp + n, O:S t- :S X o - Tp =T)Tc - Tp (11)

where Tp = time-to-peak of the UH. Then, the peak flow rate
from the balanced design storm UH procedure (in this case,
for a constant loss rate "phi-index" model) is given by

or

0

v(t) -l.

x•• IJJ'c

~tl i
16 24

NOTE ALIGI'.M:NT
OF PEAK VALLES N TM:

FIG. 2. Definition of Time Scale with Respect to Tlme-of-Con
centratlon Parameter, Tc

(13)

Mean rainfall intensity I(t) is

1
I(T) =- D(T) =aTb

-
1

T
(5)

where in (13) a phi-index (or constant) loss function is used
to compute rainfall excess; also, a necessary constraint im
posed is that i(1)Tc) ~ 4>.

Introducing a local time coordinate s defined by

(14)

(16)

(17)

(18)

t
s=

Tc

e(t) =ki(t)

Qp = [aI(TJ - eVo]A

where a =derived constant for the given S-graph and precip
itation region.

In English units, Vo = 1 and Qp[aI(Tc) - <I>]A, which is the
usual form of this type of rational method peak flow rate es
timator.

Another popular loss function is a constant proportion loss
rate given by

For a given S-graph tp and 1) are constants. For a given
precipitation region, log-log exponent b is a constant. Follow
ing the derivation presented in Hromadka (1995), (13) can be
simplified by including (5) as

and

then t =sTc, dt = Tcds.
The balanced design storm instantaneous rainfall intensities

i'"(t'") can be rewritten in terms of s'" (analogous to t'") where
s'" = t'"ITc by

i+(t+) =C~ eY-
1

ab(s+Tc)b-1 =C~ eY-
1

i(s+) (15)

where k =constant dependent on catchment land use and soil
cover.

Using (18) and (13), and repeating the previous mathemat
ical derivation results in the balanced design storm UH pro
cedure, peak flow rate estimator Qp given by

(6)

(7)

(8)

(9)

qn =qat) = i(t)

and instantaneous rainfall intensity i(t) is

d
i(T) =dT D(T) =abTb

-
1 =bI(T)

It is noted that I('T) is the usual mean rainfall intensity used in
the rational method for a Tc value of 'T.

The balanced design storm effective rainfall pattern (Le.,
rainfall less losses, or rainfall excess) e(t) is a function of the
instantaneous rainfall, which is formulated into a nested storm
pattern as described in USACE (1982). Fig. 1 illustrates an
extension of the TD-15 balanced design storm pattern that is
defined to have a peak at storm hour 16 (rather than at hour
12) and where rainfall is uniformly distributed with 2/3 of its
mass preceding the peak (rather than being symmetrical about
the peak).

With respect to Fig. 2, the nested design storm rainfall in
tensity can be resolved into components i+(t+) and i-(t-), re
spectively.

For a proportioning of rainfall quantities by allocation of a
a-proportion (for all durations) prior to time t'" = 0 (see Fig.
2 for the case of a = 2/3), instantaneous rainfall intensities are
given by

or

Similarly

i+(t+) =C~ eY-
1

i(r+)

In the preceding, the USACE (1982) balanced design storm
instantaneous rainfall intensities, given a power law relation
ship of (6), is obtained by e = 1/2.
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(22)

(21)

(24)

(25)

(26)

(27)

(28)

(29)

Qp = [aeA'I(Te) - <l>JA

Similarly, combining (19) and (20) gives

Qp = eka/(Te)At+f

USACE use an estimator for catchment lag of the form (Hro
madka et al. 1987, 1994; Hromadka and Whitley 1989, 1996;
Hromadka 1986, 1987, 1992, 1995; USACE 1982)

(
L'L )~

lag = 24fl vi

or

where S = HIL; and H = drop in elevation along the longest
watercourse. Then

T
e
=24fl L3~I2UH-~12

-y

Eqs. (24) and (27) can be combined as

Eqs. (21) and (22) provide an extension of the rational method
to larger catchment sizes and is mathematically derived from
the extended USACE (1982) balanced design storm UH
method peak flow rate estimator.

where fl = basin factor, representative of system's hydraulic
response (selected from a calibrated set of values); L = length
of longest watercourse; L e = length along longest watercourse
to catchment centroid; S = slope of longest watercourse; and
~ = calibration exponent (constant).

Use of (25) is usually appropriate for larger catchments
where depth-area effects are also important. From (1) and (25)
an estimator for Te is

three-hour depth-area curve, or other duration, can be used
accordingly in the following development). Depth-area ad
justment is accomplished by multiplying the depth-area factor
with the rainfall and then by using the modified rainfall values
for loss rate calculations.

By combining (17) and (20), a peak flow rate estimator is
(for catchments greater than 1 sq mi, and Te less than two
hours)

Linkage to Peak Flow Rate Regression Equations

By substituting (5) into (21) and (22), respectively

Qp = [aeaAf(Tc>b-t - <l>JA (23)

A similar extension for (23) follows directly.
In (28) the several parameters are included for rainfall (a,

b), depth-area effects (e, j), loss rate (k), normalized UH type
(a), balanced design storm shape (8), catchment timing via a
lag estimation (fl, L, L e , H, [3, -y), and catchment area (A).

A power law regression equation corresponding to (28) is

(19)

(20)

84.26-EXPC-.012Al

d(A) =eAf

~ 1-HOUR
~ 3-HOUR
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Including Rainfall Depth-Area Effects

where in (19), a is the same constant (and same values) used
in (17). The corresponding rational method peak flow rate es
timator QR is QR = k/(Te)A. Note that in (17) and (19) the
shape factor 8, used to define the balanced design storm shape
in (8) and (9), is absorbed into the single constant a.

It is noted that the derived constant a is a function of only
the S-graph type (e.g., mountain, valley, desert, etc.) and the
regional rainfall log-log equation exponent (which typically is
constant for large regions). The reader is referred to Hromadka
(1995) regarding application of (17) and (19) and the calibra
tion of the constant a to the balanced design storm UH
method.

The balanced design storm UH procedure includes rainfall
depth-area effects for catchment areas greater than 1 sq mi
[see USACE (1982)]. Depth-area adjustment reduces area-av
eraged T-year point rainfall values according to catchment
area. Several California flood control agencies (Hromadka
1986, 1987) use depth-area curves derived from a major re
gional storm called the Sierra-Madre storm event (California)
of 1943). The one- and three-hour depth-area curves are plot
ted in Fig. 3 and demonstrate a strong logarithmic relationship

where e and f = constants; A = catchment area; and .:1(A) =
depth-area adjustment factor for a given peak storm duration.
Such a logarithmic relationship is typically found in most
depth-area curve sets. The influence of either curve (shown in
Fig. 3) on the balanced design storm UH method peak flow
rate strongly depends on the catchment area and the time of
concentration Te • For Te values less than about two hours, the
one-hour depth-area curve provides the dominant influence.
For Te values greater than two hours (and less than five hours),
the three-hour depth-area curve provides the dominant influ
ence. For simplicity we will focus on Te values less than two
hours (and where the one-hour depth-area curve is dominant);
this case applies for the majority of runoff studies in California
that use the Sierra-Madre depth-area curves (obviously, the

FIG. 3. U.S. Army Corps of Engineers Sierra Madre Depth
Area Curves

Assuming that the ratio LJL is approximately constant (true
for watersheds having similar shapes) and recalling that catch
ment slope S = HIL, (29) may be rewritten as

• •
10

AREA (SOUARE MILES)

Q",. =ColJ'SqA' (30)
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which is of the form of many peak flow rate regression equa
tions in use today.

Eq. (30) completes the constructive mathematical linkage
among the rational method, the balanced design storm UH
method as presented in USACE (1982), and peak flow rate
regression equations for both small and large catchments. Al
though many regression equations use a daily or annual pre
cipitation value, such a variable can be included directly in
(30).

CONCLUSIONS

Runoff peak flow rates are typically estimated by the ra
tional method, a design storm (UH) method, or a regression
equation. In this technical note, the balanced design storm UH
procedure is used to derive a rational method peak flow rate
equation that, in turn, is used to derive a regression equation.
This new linkage across these three widely used peak flow
rate estimation techniques provides a foundation as to how
these approaches differ or agree, and may also provide an an
swer as to which method is best; specifically, the methods are
identical for most practical conditions, and where they differ,
the underpinnings of their mathematical structures are illumi
nated. (From the practitioner's viewpoint the best method may
be based on the availability of hydrologic data; scope and level
of detail called for by a study; or time and funds available.)
The fact that all of the three previously cited techniques con
tinue to be widely used for peak flow rate estimation by flood
control public agencies demonstrates the utility of the three
methods in practice. It is anticipated that the derived mathe-

132/ JOURNAL OF HYDROLOGIC ENGINEERING / JULY 1997

matical linkage will initiate research into improving all three
modeling approaches by inverse methods in parameter esti
mation (i.e., having calibrated one of the three techniques, the
other two techniques can be calibrated), among other topics.
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